De nombreuses recherches ont permis, au cours des deux dernières décennies, de mettre en exergue l’énorme potentiel de l’informatique quantique par rapport aux systèmes classiques, sans toutefois parvenir à démontrer la suprématie quantique. Pour rappel, cette théorie relative à la supériorité des systèmes de calcul quantiques sur leurs homologues classiques suggère que l’informatique quantique permettrait d’effectuer plus rapidement des opérations qui prennent encore trop de temps ou qu’il n’est pas possible de traiter sur un système de calcul classique.
Un ordinateur quantique utilise les propriétés quantiques de la matière, telles que la superposition et l’intrication afin d’effectuer des opérations sur des données. Il fonctionne grâce à des bits quantiques ou qubits qui sont considérés comme l’unité élémentaire d’information quantique : le qubit est pour l’ordinateur quantique l’équivalent du bit de l’ordinateur classique. L’état quantique des qubits peut posséder plusieurs valeurs et en théorie, le niveau de performance d’un système de calcul quantique augmente de façon exponentielle à mesure que le nombre de qubits qu’il peut manipuler croit.
Malheureusement, les ordinateurs quantiques sont actuellement limités à cause de leur nombre de qubits (un indicateur de leur puissance) et de leur sensibilité au phénomène de « ;décohérence ;» (un indicateur de leur stabilité) habituellement mesuré en temps de cohérence et qui désigne le passage d’un état non enchevêtré à un état enchevêtré de la mécanique quantique. Leurs performances sont, en outre, tributaires du procédé qui a permis de fabriquer les circuits du processeur quantique qu’ils embarquent, de leur architecture générale et des techniques de correction d’erreurs qui y sont implémentées.
Le temps de cohérence correspond plus précisément à la durée moyenne de temps pendant laquelle un qubit reste dans un état quantique de superposition avant que les influences environnementales ne le ramènent à 1 ou à 0. Ce court laps de temps pendant lequel les qubits existent avant de devenir chaotiques est une caractéristique intrinsèque clé de chaque système de calcul quantique influant de manière significative sur le temps qu’il faut à l’ordinateur quantique pour compléter ses calculs.
À titre d’exemple, le temps de cohérence relevé sur les différents processeurs quantiques d’IBM est respectivement de 50, 47 et 90 microsecondes sur ses machines de calcul quantique à 5, 16 et 50 qubits. Il faut signaler qu’un processeur de 50 qubits ne sera significativement plus performant qu’un processeur de 20 qubits qu’à condition qu’ils disposent tous les deux de qubits affichant des niveaux de performance identiques (temps de cohérence similaire par exemple), ce qui n’est pas le cas pour l’instant. De tels temps de cohérence ne permettent d’effectuer qu’un nombre relativement réduit d’opérations actuellement.
Parce que chaque porte ou la complétion d’une opération appliquée à un qubit nécessite un certain temps, il n’est possible d’effectuer qu’un nombre limité d’opérations avant d’atteindre la limite de temps de cohérence sur une machine quantique. Le nombre d’opérations maximal qu’il est possible d’effectuer renvoi à la notion de « ;profondeur ;» et la profondeur totale d’un circuit quantique correspond au minimum de toutes les profondeurs par qubit. Les systèmes quantiques actuels sont considérés comme superficiels de ce point de vue.
Dans un article publié récemment dans la revue Science, les chercheurs Sergey Bravyi, David Gosset, Robert Kœnig révèlent qu’ils ont développé une preuve mathématique qui, dans des cas spécifiques, illustre de façon indéniable les avantages inhérents à l’usage d’un algorithme informatique quantique par rapport à son homologue classique.
Ils ont montré que, pour ces cas précis, l’algorithme quantique exploité sur un ordinateur quantique avec une profondeur de circuit donnée et constante permet de résoudre le problème en un nombre fixe d’étapes, quel que soit le nombre de valeurs ajoutées, alors qu’avec un ordinateur classique, plus on ajoute de valeurs, plus il faut d’étapes [et donc de temps] pour résoudre l’opération.
En d’autres termes, ils ont établi qu’à une profondeur de circuit donnée et constante, un système de calcul quantique est en mesure de surpasser un système de calcul classique pour la résolution d’un même problème, même en augmentant le niveau de complexité de ce dernier :
« ;Nous démontrons que les circuits quantiques à profondeur constante sont plus puissants que leurs équivalents classiques. Pour ce faire, nous introduisons une variante non oraculaire du problème de Bernstein-Vazirani que nous présentons comme le problème de la fonction linéaire cachée en 2D, dont un exemple est spécifié par une forme quadratique “q” qui met en correspondance les chaines de “n” bits avec les entiers modulo quatre, afin d’identifier une fonction booléenne linéaire qui décrit l’action de “q” sur certains sous-ensembles de n-bits.
Nous prouvons que tout circuit probabiliste classique composé de portes en éventail bornées qui résout le problème de la fonction linéaire cachée en 2D avec une probabilité élevée doit avoir une profondeur logarithmique en n. En revanche, nous montrons que ce problème peut être résolu avec certitude par un circuit quantique à profondeur constante composé de portes à un et deux bits agissant localement sur une grille à deux dimensions ;», ont-ils expliqué.
Cette découverte « ;donne un aperçu de ce qui rend un ordinateur quantique plus puissant ;», ont-ils déclaré, avant d’ajouter : « ;nous espérons qu’à l’avenir, elle conduira à des algorithmes plus pratiques et plus utiles ;». Ces algorithmes qui restent à développer ne seront pas nécessairement conçus pour les systèmes quantiques, mais pourraient plutôt profiter à des systèmes hybrides classiques-quantiques.
Source : Étude (PDF), IBM, Science
Et vous ?
Qu’en pensez-vous ?
Voir aussi
Google confirme son intention de présenter le premier ordinateur quantique de 49 qubits au monde avant la fin de cette année
IBM affiche son intention de commercialiser des systèmes informatiques quantiques universels via sa plateforme cloud
IBM réalise une percée technologique importante pour propulser l'adoption des ordinateurs quantiques avec ses travaux sur l'analyse des molécules
La Chine dévoile un système quantique de 18 qubits qui exploite 3 degrés de liberté de 6 photons et aurait atteint un niveau d'intrication maximal