
S’il est encore à ses débuts, TensorFlow de l’équipe Google Brain est déjà utilisé pour la reconnaissance vocale dans l’application Google ou pour chercher dans Google Photos. Il est aussi utilisé pour Smart Reply, une fonctionnalité récemment introduite dans l’application Inbox, qui est capable d’analyser des messages reçus et proposer des réponses à l’utilisateur.
« TensorFlow est plus rapide, plus intelligent et plus souple que notre ancien système, de sorte qu’il peut être adapté plus facilement à de nouveaux produits et à la recherche », explique Sundar Pichai, PDG de Google. « C'est un système de machine learning hautement évolutif - il peut fonctionner sur un simple smartphone ou à travers des milliers d’ordinateurs dans les datacenters », a-t-il ajouté.
TensorFlow permet la construction de réseaux de neurones jusqu’à cinq fois plus vite par rapport à l’ancien système de Google, ce qui garantit donc qu’il peut être utilisé pour améliorer les applications plus rapidement. Toutefois, même avec ces performances, le PDG de Google reconnaît que le machine learning n’est qu’à un stade précoce au point où « les ordinateurs d’aujourd’hui ne peuvent toujours pas faire ce qu’un enfant de quatre ans peut faire sans effort ». Pour cette raison, la société rend l’outil open source pour permettre à la communauté du machine learning de progresser rapidement dans les recherches, en échangeant des idées sur un code qui marche, plutôt que de s’établir juste sur des documents de recherche.
Dans un message Google+, Vincent Vanhoucke, chercheur chez Google décrit TensorFlow comme un framework de deep learning, une branche du machine learning, qui vient avec une interface Python facile à utiliser, et qui prend également en charge le langage C++. Le support de bien d’autres langages est également prévu dans le système de Google.

Sources : Blog Google, Google+, Google Git
Et vous ?

Voir aussi

